Direct emission of I2 molecule and IO radical from the heterogeneous reactions of gaseous ozone with aqueous potassium iodide solution.

نویسندگان

  • Yosuke Sakamoto
  • Akihiro Yabushita
  • Masahiro Kawasaki
  • Shinichi Enami
چکیده

Recent studies indicated that gaseous halogens mediate key tropospheric chemical processes. The inclusion of halogen-ozone chemistry in atmospheric box models actually closes the approximately 50% gap between estimated and measured ozone losses in the marine boundary layer. The additional source of gaseous halogens is deemed to involve previously unaccounted for reactions of O(3)(g) with sea surface water and marine aerosols. Here, we report that molecular iodine, I(2)(g), and iodine monoxide radical, IO(g), are released ([I(2)(g)] > 100[IO(g)]) during the heterogeneous reaction of gaseous ozone, O(3)(g), with aqueous potassium iodide, KI(aq). It was found that (1) the amounts of I(2)(g) and IO(g) produced are directly proportional to [KI(aq)] up to 5 mM and (2) IO(g) yields are independent of bulk pH between 2 and 11, whereas I(2)(g) production is markedly enhanced at pH < 4. We propose that O(3)(g) reacts with I(-) at the air/water interface to produce I(2)(g) and IO(g) via HOI and IOOO(-) intermediates, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Emission of iodine-containing volatiles by selected microalgae species

In this study we present the results of an emission study of different phytoplankton samples in aqueous media treated with elevated ozone levels. Halocarbon measurements show that the samples tested released bromoform and different iodocarbons, including iodomethane, iodochloromethane and diiodomethane. Iodide and iodate levels in the liquid phase were representative of concentrations of surfac...

متن کامل

Active molecular iodine photochemistry in the Arctic.

During springtime, the Arctic atmospheric boundary layer undergoes frequent rapid depletions in ozone and gaseous elemental mercury due to reactions with halogen atoms, influencing atmospheric composition and pollutant fate. Although bromine chemistry has been shown to initiate ozone depletion events, and it has long been hypothesized that iodine chemistry may contribute, no previous measuremen...

متن کامل

Comparing activated carbon and magnetic activated carbon in removal of linear alkylbenzene sulfonate from aqueous solution by heterogeneous catalytic ozonation process

Activated carbon from pine cone (PCAC) was used as a precursor to prepare Fe3O4/magnetic activated carbon (MPCAC). Here, the removal of linear alkylbenzene sulfonate (LAS) was studied using catalytic ozonation process (COP) in exposure to MPCAC. Subsequently, it was compared with PCAC. Moreover, the effects of solution's initial pH, catalyst dosage, and the time of ozonati...

متن کامل

The efficacy of gaseous ozone against different forms of Candida albicans

Background and Purpose: Ozone is an inorganic molecule with effective antimicrobial properties. Clinical treatment of ozonated water was used for the elimination of Candida albicans, Enterococcus faecalis, endotoxins, and biofilms from root canals. In addition, its therapeutic effects for tinea pedis, ulcers, and leishmaniasis were investigated. The purpose of the present study was to evaluate ...

متن کامل

A theoretical study on the reaction of ozone with aqueous iodide.

Atmospheric iodine chemistry plays a key role in tropospheric ozone catalytic destruction, new particle formation, and as one of the possible sinks of gaseous polar elemental mercury. Moreover, it has been recently proposed that reaction of ozone with iodide on the sea surface could be the major contributor to the chemical loss of atmospheric ozone. However, the mechanism of the reaction betwee...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 113 27  شماره 

صفحات  -

تاریخ انتشار 2009